

Power Transformer

PC Mount: Flat Pack ${ }^{\text {тм }}$

FP230-25

Electrical Specifications (@25C)

1. Maximum Power: 6.0 VA
2. Primary Voltage:

Series: 230V@50/60 Hz
Parallel: 115V@50/60Hz
3. Secondary:

Series: 230.0VCT @ 0.025Amps
Parallel: 120.0V @ 0.050Amps

Description:

The FP230-25 is part of a series which has a long history of reliable service in the field, made from a proven design and constructed with UL recognized materials.

Construction:

Wound on two dual channel nylon bobbin. Materials are UL recognized, Class B ($130^{\circ} \mathrm{C}$) rated.

Safety:

These products are 100% hipot tested with an insulation of 2000 V between primary and secondary windings and 1500 V between the primary / secondary windings and the core.

Agency File:

UL: File E53148, UL 506, Class B General Purpose Transformer,
cUL: File E53148, UL 506, Class B General Purpose Transformer, Canadian Use

MI cris

Dimensions:

A	B	C	D	E	F
1.875	1.562	0.875	0.267	0.375	1.600

Units: In inches
Weight: 7.0 oz
Pin Dimension: . $020 \times .041$ in

RoHS Compliance: As of manufacturing date February 2005, all standard products meet the requirements of 2002/95/EC, known as the RoHS initiative.

:: FI a t Pack
:: Description
The Triad Flat pack power transformer is designed to meet the needs of lower clearance PC board and solid state power designs. These units can also be used for control and instrumentation applications. Voltages and currents were chosen for widely used power applications. It is offered in a dual primary and dual secondary configuration.

:: Specifications

Primary: $115 / 230 \mathrm{~V}, 50 / 60 \mathrm{~Hz} \mid$ Hi Pot Tested: 2,000 VRMS | Low Profile: Allows 3/4" card spacing for 2.5 VA units; Allows 1" card spacing for 6 VA units; Allows $11 / 4$ " card spacing for 12 VA units: Allows $11 / 2$ " card spacing for 24 VA and 48 VA units.

Section	Type No.	VA	Secondary		Dimensions					$\begin{aligned} & \text { Wt. } \\ & \text { Oz. } \end{aligned}$
			Series	Parallel	H	W	L	A	B	
A	FP10-250 FP12-200 FP16-150 FP20-125 FP24-100 FP30-85 FP34-75 FP40-60 FP56-45 FP88-28 FP120-20 FP230-10	2.5	10.0 V CT @ 0.25A 12.6 V CT @ 0.2 A 16.0 CT @ 0.15A 20.0 CT @ 0.125A 24.0 CT @ 0.1A 30.0 V CT @ 0.08A 34.0V CT @ 0.075A 40.0 V CT @ 0.06A 56.0 V CT @ 0.045A 88.0V CT @ 0.028A 120.0V CT @ 0.02A 230.0V CT @ 0.01A	$\begin{gathered} \hline 5.0 \mathrm{~V} @ 0.5 \mathrm{~A} \\ 6.3 \mathrm{~V} @ 0.4 \mathrm{~A} \\ 8.0 \mathrm{~V} @ 0.3 \mathrm{~A} \\ 10.0 \mathrm{~V} @ 0.25 \mathrm{~A} \\ 12.0 \mathrm{~V} @ 0.2 \mathrm{~A} \\ 15.0 \mathrm{~V} @ 0.16 \mathrm{~A} \\ 17.0 \mathrm{~V} @ 0.15 \mathrm{~A} \\ 20.0 \mathrm{~V} @ 0.12 \mathrm{~A} \\ 28.0 \mathrm{~V} @ 0.09 \mathrm{~A} \\ 44.0 \mathrm{~V} @ 0.056 \mathrm{~A} \\ 60.0 \mathrm{~V} @ 0.04 \mathrm{~A} \\ 115.0 \mathrm{~V} @ 0.02 \mathrm{~A} \end{gathered}$	0.650	1.562	1.875	1.600	0.375	5
B	FP10-600 FP12-475 FP16-375 FP20-300 FP24-250 FP30-200 FP34-170 FP40-150 FP56-100 FP88-65 FP120-50 FP230-25	6.0	10.0V CT @ 0.6A 12.6 V CT @ 0.475 A 16.0 CT @ 0.375A 20.0 CT @ 0.3A 24.0 CT @ 0.25A 30.0 V CT @ 0.2A 34.0V CT @ 0.17A 40.0V CT @ 0.15A 56.0 V CT @ 0.1A 88.0V CT @ 0.065A 120.0V CT @ 0.05A 230.0V CT @ 0.025A	$\begin{aligned} & 5.0 \mathrm{~V} @ 1.2 \mathrm{~A} \\ & 6.3 \mathrm{~V} @ 0.95 \mathrm{~A} \\ & 8.0 \mathrm{~V} @ 0.75 \mathrm{~A} \\ & 10.0 \mathrm{~V} @ 0.8 \mathrm{~A} \\ & 12.0 \mathrm{~V} @ 0.5 \mathrm{~A} \\ & 15.0 \mathrm{~V} @ 0.4 \mathrm{~A} \\ & 17.0 \mathrm{~V} @ 0.34 \mathrm{~A} \\ & 20.0 \mathrm{~V} @ 0.3 \mathrm{~A} \\ & 28.0 \mathrm{~V} @ 0.2 \mathrm{~A} \\ & 44.0 \mathrm{~V} @ 0.13 \mathrm{~A} \\ & 60.0 \mathrm{~V} @ 0.1 \mathrm{~A} \\ & 115.0 \mathrm{~V} @ 0.05 \mathrm{~A} \end{aligned}$	0.875	1.562	1.875	1.600	0.375	7
C	FP10-1200 FP12-950 FP16-750 FP20-600 FP24-500 FP30-400 FP34-340 FP40-300 FP56-200 FP88-130 FP120-100 FP230-50	12.0	10.0 V CT @ 1.2A 12.6V CT @ 0.95A 16.0 CT @ 0.75A 20.0 CT @ 0.6A 24.0 CT @ 0.5A 30.0 V CT @ 0.4 A 34.0V CT @ 0.34A 40.0V CT @ 0.3A 56.0 V CT @ 0.2A 88.0V CT @ 0.13A 120.0V CT @ 0.1A 230.0V CT @ 0.05A	$\begin{gathered} 5.0 \mathrm{~V} @ 2.4 \mathrm{~A} \\ 6.3 \mathrm{~V} @ 1.9 \mathrm{~A} \\ 8.0 \mathrm{~V} @ 1.5 \mathrm{~A} \\ 10.0 \mathrm{~V} @ 1.2 \mathrm{~A} \\ 12.0 \mathrm{~V} @ 1.0 \mathrm{~A} \\ 15.0 \mathrm{~V} @ 0.8 \mathrm{~A} \\ 17.0 \mathrm{~V} @ 0.68 \mathrm{~A} \\ 20.0 \mathrm{~V} @ 0.6 \mathrm{~A} \\ 28.0 \mathrm{~V} @ 0.4 \mathrm{~A} \\ 44.0 \mathrm{~V} @ 0.26 \mathrm{~A} \\ 60.0 \mathrm{~V} @ 0.2 \mathrm{~A} \\ 115.0 \mathrm{~V} @ 0.1 \mathrm{~A} \end{gathered}$	1.062	2.000	2.500	2.000	0.500	11
D	FP10-2400 FP12-1900 FP16-1500 FP20-1200 FP24-1000 FP30-800 FP34-700 FP40-600 FP56-425	24	10.0 V CT @ 2.4A 12.6 V CT @ 1.9A 16.0 V CT @ 1.5A 20.0V CT @ 1.2A 24.0V CT @ 1.0A 30 V CT @ 0.80 mA 34V CT @ 0.70mA 56 V CT @ 0.60 mA 56 V CT @ 0.425 mA	5.0V @ 4.8A 6.3V @ 3.8A 8.0V @ 3.0A 10.0V @ 2.4A 12.0V @ 2.0A 15.0V @ 1.6A 17.0V @ 1.4A 20.0V @ 1.2A 28.0V @ 0.85A	1.375	2.25	2.87	1.9	0.600	15
E	FP10-4800 FP12-3800 FP16-3000 FP20-2400 FP24-2000 FP30-1600 FP34-1400 FP40-1200 FP56-850	48	10 V CT @ 4.8A 12.6 V CT @ 3.8A 16V CT @ 3.0A 20.0V CT @ 2.4A 24.0V CT @ 2.0A 30.0V CT @ 1.6A 34.0 V CT @ 1.4A 40.0V CT @ 1.2A 56.0 V CT @ 0.85 A	5.0V @ 9.6A 6.3V @ 7.6A 8.0V @ 6.0A 10.0V @ 4.8A 12.0V @ 4.0A 15.0V @ 3.2A 17.0V @ 2.8A 20.0V @ 2.4A 28.0V @ 1.7A	1.375	2.5	3.12	2.18	0.600	21

[^0]
Technical Notes

1. Hi-pot tested at 2,000 VRMS
2. Split bobbin with side-by-side windings to reduce capacitance and eliminate the need for a static shield.

PRI

[^0]: $C T=$ Center Tap

